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Traditional theories of sensorimotor learning posit that animals
use sensory error signals to find the optimal motor command in
the face of Gaussian sensory and motor noise. However, most
such theories cannot explain common behavioral observations,
for example, that smaller sensory errors are more readily cor-
rected than larger errors and large abrupt (but not gradually
introduced) errors lead to weak learning. Here, we propose a the-
ory of sensorimotor learning that explains these observations.
The theory posits that the animal controls an entire probability
distribution of motor commands rather than trying to produce
a single optimal command and that learning arises via Bayesian
inference when new sensory information becomes available. We
test this theory using data from a songbird, the Bengalese finch,
that is adapting the pitch (fundamental frequency) of its song
following perturbations of auditory feedback using miniature
headphones. We observe the distribution of the sung pitches to
have long, non-Gaussian tails, which, within our theory, explains
the observed dynamics of learning. Further, the theory makes sur-
prising predictions about the dynamics of the shape of the pitch
distribution, which we confirm experimentally.

power-law tails | sensorimotor learning | dynamical Bayesian inference |
vocal control

Learned behaviors—reaching for an object, talking, and hun-
dreds of others—allow the organism to interact with the

ever-changing surrounding world. To learn and execute skilled
behaviors, it is vital for such behaviors to fluctuate from iteration
to iteration. Such variability is not limited to inevitable biological
noise (1, 2), but rather a significant part of it is controlled by ani-
mals themselves and is used for exploration during learning (3,
4). Furthermore, learned behaviors rely heavily on sensory feed-
back. The feedback is needed, first, to guide the initial acquisition
of the behaviors and then to maintain the needed motor output
in the face of changes in the motor periphery and fluctuations in
the environment. Within such sensorimotor feedback loops, the
brain computes how to use the inherently noisy sensory signals
to change patterns of activation of inherently noisy muscles to
produce the desired behavior. This transformation from sensory
feedback to motor output is both robust and flexible, as demon-
strated in many species in which systematic perturbations of the
feedback dramatically reshape behaviors (1, 5–8).

Since many complex behaviors are characterized by both
tightly controlled motor variability and robust sensorimotor
learning, we propose that, during learning, the brain controls
the distribution of behaviors. In contrast, most prior theories
of animal learning have assumed that there is a single optimal
motor command that the animal tries to produce and that, after
learning, deviations from the optimal behavior result from the
unavoidable (Gaussian) downstream motor noise. Such prior
models include the classic Rescorla–Wagner (RW) model (9), as
well as more modern approaches belonging to the family of rein-
forcement learning (10–12), Kalman filters (13, 14), or dynamical
Bayesian filter models (15, 16). In many of these theories, the
variability of the behavior is intrinsic to motor exploration and
deliberately controlled, but the distribution of this variability is

not itself shaped by the animal’s experience (17–19). Such the-
ories have addressed many important experimental questions,
such as evaluating the optimality of the learning process (13, 20–
23), accounting for multiple temporal scales in learning (7, 13, 24,
25), identifying the complexity of behaviors that can be learned
(26), and pointing out how the necessary computations could be
performed using networks of spiking neurons (12, 27–31).

However, despite these successes, most prior models that
assume that the brain aims to achieve a single optimal out-
put have been unable to explain some commonly observed
experimental results. For example, since such theories assume
that errors between the target and the realized behavior drive
changes in future motor commands, they typically predict large
behavioral changes in response to large errors. In contrast,
experiments in multiple species report a decrease in both the
speed and the magnitude of learning with an increase in the
experienced sensory error (6, 22, 32, 33). One can rescue tradi-
tional theories by allowing the animal to reject large errors as
“irrelevant”—unlikely to have come from its own actions (22,
34). However, such rejection models have not yet explained why
the same animals that cannot compensate for large errors can
correct for even larger ones, as long as their magnitude grows
gradually with time (6, 33).

Here we present a theory (Fig. 1) of a classic model system
for sensorimotor learning—vocal adaptation in a songbird—in
which the brain controls a probability distribution of motor com-
mands and updates this distribution by a recursive Bayesian
inference procedure. The distribution of the song pitch is empir-
ically heavy tailed (Fig. 2C), and the pitch variability is much
smaller in a song directed at a female vs. the undirected song,
suggesting that the variability and hence its non-Gaussian tails
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Fig. 1. The dynamical Bayesian model (Bayesian filter). (A) A Bayesian filter consists of the recursive application of two general steps (35): (i) an
observation update, which corresponds to novel sensory input and updates the underlying probability distribution of plausible motor commands
using Bayes’ formula, and (ii) a time evolution update, which denotes the temporal propagation and corresponds to uncertainty increasing with
time (main text); here the probability distribution is updated by convolution with a propagator. These two steps are repeated for each new piece
of sensory data in a recursive loop. (B) Example distributions for the entire procedure in two scenarios: Gaussian (Top) and heavy-tailed (Bot-
tom) distributions. The x axis, φt , represents the motor command which results in a specific pitch sung by the bird. The outcome of this motor
command is then measured by two different sensory modalities, represented by {s(i)

t }i=1,2, with corresponding likelihood functions L1(φt ; ∆) and
L2(φt ; 0), respectively. The −∆ shift for modality 1 is induced by the experimentalist, which results in the animal compensating its pitch toward +∆.
Dashed brown lines represent the individual likelihood functions from the individual modalities, and the solid lines represent their product, which
signals how likely it is that the correct motor command corresponds to φt . Heavy-tailed distributions can produce a bimodal likelihood, which, mul-
tiplied by the prior, suppresses large-error signals. In contrast, Gaussian likelihoods are unimodal and result in greater compensatory changes in
behavior.

are deliberately controlled. Thus, our model does not make the
customary Gaussian assumptions. The focus on learning and
controlling (non-Gaussian) distributions of behavior allows us
to capture successfully all of the above-described nonlinearities
in learning dynamics and, furthermore, to account for previ-
ously unnoticed learning-dependent changes in the shape of the
distribution of the behavior.

Results
Biological Model System. Vocal control in songbirds is a powerful
model system for examining sensorimotor learning of complex
tasks (36). The phenomenology we are trying to explain arises
from experimental approaches to inducing song plasticity (33).
Songbirds sing spontaneously and prolifically and use auditory
feedback to shape their songs toward a “template” learned from
an adult bird tutor during development. When sensory feedback
is perturbed (see below) using headphones to shift the pitch
(fundamental frequency) of auditory feedback (33), birds com-
pensate by changing the pitch of their songs so that the pitch
they hear is closer to the unperturbed one. As shown in Fig. 2A,
the speed of the compensation and its maximum value, which
is measured as a fraction of the pitch shift and referred to as
the magnitude of learning hereafter, decrease with the increasing
shift magnitude, so that a shift of three semitones results in near-
zero fractional compensation. Crucially, the small compensation

for large perturbation does not reflect the limited plasticity of
the adult brain since imposing the perturbation gradually, rather
than instantaneously, results in a large compensation (Fig. 2B).

Data. We use experimental data collected in our previous work
(8, 33) to develop our mathematical model of learning. As
detailed in ref. 39, we used a virtual auditory feedback system
(8, 40) to evoke sensorimotor learning in adult songbirds. For
this, miniature headphones were custom fitted to each bird and
used to provide online auditory feedback in which the pitch
(fundamental frequency) of the bird’s vocalizations could be
manipulated in real time, with a loop delay of roughly 10 ms.
In addition to providing pitch-shifted feedback, the headphones
largely blocked the airborne transmission of the bird’s song from
reaching the ear canals, thereby effectively replacing the bird’s
natural airborne auditory feedback with the manipulated ver-
sion. Pitch shifts were introduced after a baseline period of at
least 3 d in which birds sang while wearing headphones but with-
out pitch shifts. All pitch shifts were implemented relative to the
bird’s current vocal pitch and were therefore “correctable” in the
sense that if the bird changed its vocal pitch to fully compensate
for the imposed pitch shift, the pitch of auditory feedback heard
through the headphones would be equal to its baseline value.
All data were collected during undirected singing (i.e., no female
bird was present).
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Fig. 2. Experimental data and model fitting. The same six parameters of the model are used to simultaneously fit all data. (A) The symbols with error bars
are four groups of experimental data, with different colors and symbols indicating different shift sizes (red-brown circle, 0.5-semitone shift; blue square,
1-semitone shift; green diamond, 1.5-semitones shift; cyan upper triangle, 3-semitones shift). The error bars indicate the SE of the group mean, accounting
for variances across individual birds and within one bird (Materials and Methods). For each group, the data are combined from three to eight different
birds, and the sign of the experimental perturbation (lowering or raising pitch) is always defined so that adaptive (i.e., error-correcting) vocal changes are
positive. Data points without error bars had only a single bird, and they are not used for the fitting, which we denote by open symbols. The mean pitch
sung on day 0 by each bird is defined as the zero-semitone compensation (φ= 0). The solid lines with 1-SD bands (Materials and Methods) are results of the
model fits, with the same color convention as in experimental data. Inset shows learning curves in absolute units, without rescaling by the shift size and
without model error bands. (B) The lower triangles with error bars show the data from a staircase-shift experiment, with the same plotting conventions
as in A. The data are combined from three birds. During the experiment, every 6 d, the shift size is increased by 0.35 semitone, as shown by the dotted
horizontal line segments. On the last day of the experiment, the experienced pitch shift is 2.8 semitones. The magenta solid line with 1-SD band is the
model fit. The combined quality of fit for the five curves collectively (four step perturbations and a staircase perturbation) is χ2/df ≈ 1.47 (compared with
χ2/df ≈ 28.4 for the null model of the nonadaptive, zero-pitch compensation line). Note, however, that such Gaussian statistics of the fit quality should be
taken with a grain of salt for nonnormally distributed data. (C) Dots represent the distribution of pitch on day 0, before the pitch shift perturbation (the
baseline distribution), where the data are from 23 different experiments (all pitch shifts combined). The gray parabola is a Gaussian fit to the data within
the ±1 semitone range. The empirical distribution has long, nonexponential tails. The brown solid line with 1-SD band is the model fit. Deviance of the
model fit relative to the perfect fit [the latter estimated as the Nemenman–Shafee–Bialek entropy of the data (37, 38)] is 0.057 per sample point.

Mathematical Model. To describe the data, we introduce a
dynamical Bayesian filter model (Fig. 1A). We focus on just
one variable learned by the animal during repeated singing—
the pitch of the song syllables. Even though the animal learns
the motor command and not the pitch directly, we do not
distinguish between the produced pitch φ and the motor com-
mand leading to it because the latter is not known in behav-
ioral experiments. We set the mean “baseline” pitch sung by
the animal as φ= 0, representing the “template” of the tutor’s
song, or the scalar target memorized during development, and
nonzero values of φ denote deviations of the sung pitch from the
target.

However, while an instantaneous output of the motor circuit
in our model is a scalar value of the pitch, the state of the
motor learning system at each time step is a probability distri-
bution over motor commands that the animal expects can lead
to the target motor behavior. This is in contrast to the more
common assumption that the state of the learning system is a
scalar, usually the mean behavior, which is then corrupted by
the downstream noise (34). Thus, at time t , the animal has
access to the prior distribution over plausible motor commands,
pprior(φt). We remain deliberately vague about how this dis-
tribution is stored and updated in the animal memory (e.g.,
as a set of moments, or values, or samples, or yet something
else) and focus instead not on how the neural computation is
performed, but on modeling which computation is performed
by the animal. We assume that the bird randomly selects and
produces the pitch from this distribution of plausibly correct
motor commands. In other words, we suggest that the exper-
imentally observed variability of sung pitches is dominated by
the deliberate exploration of plausible motor commands, rather
than by noise in the motor system. This is supported by the

experimental finding that the variance of pitch during singing
directed at a female (performance) is significantly smaller than
the variance during undirected singing (practice) (4, 41).

After producing a vocalization, the bird then senses the pitch
of the produced song syllable through various sensory pathways.
Besides the normal airborne auditory feedback reaching the ears,
which we can pitch shift, information about the sung pitch may be
available through other, unmanipulated pathways. For example,
efference copy may form an internal short-term memory of the
produced specific motor command (42). Additionally, proprio-
ceptive sensing presumably also provides unshifted information
(43). Finally, unshifted acoustic vibrations might be transmitted
through body tissue in addition to the air, as is thought to be
the case in studies that use pitch shifts to perturb human vocal
production (44, 45).

We denote all feedback signals as s
(i)
t where the index i

denotes different sensory modalities. Because sensing is noisy,
feedback is not absolutely accurate. We posit that the animal
interprets it using Bayes’ formula. That is, the posterior proba-
bility of which motor commands would lead to the target with
no error is changed by the observed sensory signals, ppost(φt)∝
plikelihood({s(i)t }|φt)pprior(φt), where plikelihood represents the
probability of observing a certain sensory feedback value given
the produced motor command φt was the correct one. In its turn,
the motor command is chosen from the prior distribution, pprior,
which represents the a priori probability of the command to
result in no sensory error. In other words, if the sensory feedback
indicates that the pitch was likely too high, then the posterior
is shifted toward motor commands that have a higher proba-
bility of producing a lower pitch and hence no sensory error—
similar to how an error would be corrected in a control-theoretic

E8540 | www.pnas.org/cgi/doi/10.1073/pnas.1713020115 Zhou et al.
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approach to the same problem. We discuss this in more detail
below.

Finally, the animal expects that the motor command needed
to produce the target pitch with no error may change with time
because of slow random changes in the motor plant. In other
words, in the absence of new sensory information, the animal
must increase its uncertainty about which command to produce
with time (this is a direct analogue of increase in uncertainty of
the Kalman filter without new measurements). Such increase in
uncertainty is given by pprop(φt+δt |φt), the propagator of statis-
tical field theories (46). Overall, this results in the distribution of
motor outputs after one cycle of the model

pprior(φt+δt) =
1

Z

∫
pprop(φt+δt |φt)

× plikelihood({s(i)t }|φt)pprior(φt)dφt , [1]

where Z is the normalization constant.
We choose δt to be 1 d in our implementation of the model

and lump all vocalizations (which we record) and all sensory
feedback (which are unknown) in one time period together.
That is, we look at timescales of changes across days, rather
than faster fluctuations on timescales of minutes or hours. This
matches the temporal dynamics of the learning curves (Fig. 2
A and B). Since the bird sings hundreds of song bouts daily,
we now use the law of large numbers and replace the unknown
sensory feedback for individual vocalizations by its expectation
value s

(i)
t → s

(i)
t . For simplicity, we focus on just two sensory

modalities, the first one affected by the headphones and the
second one not affected, and we remain agnostic about the
exact nature of this second modality among the possibilities
noted above. Thus, the expectation values of the feedbacks are
the shifted and the unshifted versions of the expected value of the
sung pitch, s(1)t =φt −∆ and s

(2)
t =φt , where −∆ is the exper-

imentally induced shift (more on the minus sign below). Note
that since φt is the motor command that the animal expects to
produce the target pitch, the term plikelihood(s

(i)
t |φt) should be

viewed as the probability of generating the feedback s
(i)
t given

that φt was the correct motor command or as a likelihood of φt

being the correct command given the observed s
(i)
t . This intro-

duces a negative sign, the compensation, into the analysis—for a
positive s

(i)
t , the most likely φt to lead to the target is negative

and vice versa. While potentially confusing, this is the same con-
vention that is used in all filtering applications—a positive sen-
sory signal means the need to compensate and to lower the motor
command, and the negative signal leads to the opposite. In other
words, the bird uses the sensory feedback to determine what it
should have sung and not only what it sang. With that, we refer
to the conditional probability distributions plikelihood(s

(i)
t |φt)

for each sensory modality i as the likelihood functions Li(φt)
for a certain motor command being the target given the
observed sensory feedback. Thus, assuming that both sensory
inputs are independent measurements of the motor output, we
rewrite Eq. 1 as

pprior(φt+δt) =
1

Z

∫
pprop(φt+δt |φt)

×L1(φt ; ∆)L2(φt ; 0)pprior(φt)dφt , [2]

where 0 and ∆ represent the centers of the likelihoods (or the
maximum likelihoods). This explains our choice of denoting the
experimental shift −∆, so that the compensation by the ani-
mal is instead +∆, and L is centered on +∆ as well. Note
that the likelihoods for the shifted and unshifted modalities are

centered around ∆ and 0, respectively, and bias the learning of
what should be sung toward these centers irrespective of the cur-
rent value of φt . We emphasize again that, in this formalism, we
do not distinguish the motor noise and the sensory noise and
assume that both are smaller than the deliberate exploratory
variance (which is supported by the substantial variance reduc-
tion in directed vs. undirected song). This is consistent with not
distinguishing individual vocalizations and focusing on time steps
of 1 d in the Bayesian update equation above.

As illustrated in Fig. 1B, such Bayesian filtering behaves differ-
ently for Gaussian and heavy-tailed likelihoods and propagators.
Indeed, if the two likelihoods are Gaussians, their product is
also a Gaussian centered between them. In this case, the learn-
ing speed of an animal is linear in the error ∆, no matter how
large this error is, which conflicts with the experimental results
in songbirds and other species (5, 8, 22, 36). Similarly, if the two
likelihoods have long tails, then when the error is small, their
product is also a single-peaked distribution as in the Gaussian
case. However, when the error size ∆ is large, the product of
such long-tailed likelihoods is bimodal, with evidence peaks at
the shifted and the unshifted values, with a valley in the mid-
dle. Since the prior expectations of the animal are developed
before the sensory perturbation is turned on, they peak near
the unshifted value. Multiplying the prior by the likelihood then
leads to suppression of the shifted peak and hence of large error
signals in animal learning.

In Eq. 2, there are three distributions to be defined: L1(φt ; ∆),
L2(φt ; 0), and pprop(φt+δt |φt), corresponding to the evidence
term from the shifted channel, the evidence term from the
unshifted channel, and the time propagation kernel, respectively.
The prior at the start of the experiment t = 0, pprior(φ0), is not
an independent degree of freedom: It is the steady state of the
recurrent application of Eq. 2 with no perturbation, ∆ = 0. We
have verified numerically that a wide variety of shapes of L1,
L2, and pprop result in learning dynamics that can approximate
the experimental data (Materials and Methods). To constrain
the selection of specific functional forms of the distributions,
we point out that the error in sensory feedback obtained by
the animal is a combination of many noisy processes, includ-
ing both sensing itself and the neural computation that extracts
the pitch from the auditory input and then compares it to the
target pitch. By the well-known generalized central limit the-
orem, the sum of these processes is expected to converge to
what are known as Lévy alpha-stable distributions, often simply
called stable distributions (47) (Materials and Methods). If the
individual noise sources have finite variances, the stable distribu-
tion will be a Gaussian. However, if the individual sources have
heavy tails and infinite variances, then their stable distribution
will be heavy tailed as well (Cauchy distribution is one example).
Most stable distributions cannot be expressed in a closed form,
but they can be evaluated numerically (Materials and Methods).
Here we assume symmetric stable distributions, truncated at ±8
semitones (Materials and Methods). Such distributions are char-
acterized by three parameters: the stability parameter α (mea-
suring the proportion of the probability in the tails), the scale
or width parameter γ, and the location or the center parameter
µ (the latter can be predetermined to be 0, ∆, or the previous
time-step value in our case). For three distributions L1(φt ; ∆),
L2(φt ; 0), and pprop, this results in the total of six unknown
parameters.

Fits to Data. We fitted the set of six parameters of our model
simultaneously to all of the data shown in Fig. 2. Our dataset
consists of 23 individual experiments across five experimental
conditions: four constant pitch-shift learning curves and one
gradual, staircase-shift learning curve (see Materials and Meth-
ods for details). As mentioned previously, birds learn the best
(larger and faster compensation) for smaller perturbations, here

Zhou et al. PNAS | vol. 115 | no. 36 | E8541

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 



www.manaraa.com

0.5 semitone (Fig. 2A). In contrast, for a large 3-semitone pertur-
bation, the birds do not compensate at all within the 14 d of the
experiment. However, the birds are able to learn and compensate
large perturbations when the perturbation increases gradually, as
in the staircase experiment in Fig. 2B. Importantly, the baseline
distribution (Fig. 2C) has a robust non-Gaussian tail, supporting
our model. We note that our six-parameter model fits are able
to simultaneously describe all of these data with a surprising pre-
cision, including their most salient features: dependence of the
speed and the magnitude of the compensation on the perturba-
tion size for the constant and the staircase experiments, as well
as the heavy tails in the baseline distribution.

Predictions. Mathematical models are useful to the extent that
they can predict experimental results not used to fit them. Quan-
titative predictions of qualitatively new results are particularly
important for arguing that the model captures the system’s
behavior. To test the predictive power of our model, we used it to
predict the dynamics of higher-order statistics of pitches during
learning, rather than using it to simply predict the mean behav-
ior. We first use the model to predict time-dependent measures
of the variability (SD in this case) of the pitch. As shown in Fig.
3 A–E, our model correctly predicted time-dependent behaviors
in the SD in both single-shift (Fig. 3 A–D) and staircase-shift
experiments (Fig. 3E) with surprising accuracy. We stress again
that no new parameter fits were done for these curves. Poten-

tially even more interesting, Fig. 3F shows that our model is
capable of predicting unexpected features of the probability
distribution of pitches, such as the asymmetric and bimodal struc-
ture of the pitch distribution at the end of the staircase-shift
experiment. This bimodal structure is predicted by our theory,
since the theory posits that the (bimodal) likelihood distribution
(Fig. 1B, Bottom) will iteratively propagate into the observable
pitch distribution (the prior). The existence of the bimodal pitch
distribution in the data therefore provides strong evidence in
support of our theory. Importantly, this phenomenon can never
be reproduced by models based on animals learning a single
motor command with Gaussian noise around it, rather than a
heavy-tailed distribution of motor commands.

Discussion
We introduced a mathematical framework within the class of
observation–evolution models (35) for understanding sensori-
motor learning: a dynamical Bayesian filter with non-Gaussian
(heavy-tailed) distributions. Our model describes the dynamics
of the whole probability distribution of the motor commands,
rather than just its mean value. We posit that this distribution
controls the animal’s deliberate exploration of plausible motor
commands. The model reproduces the learning curves observed
in a range of songbird vocal adaptation experiments, which
classical behavioral theories have not been able to do to date.
Further, also unlike the previous models, our approach predicts

0 7 14
Day

0.5

1  
S

ta
nd

ar
d 

de
vi

at
io

n 
(s

em
ito

ne
)

fo
r 1

.5
 s

em
ito

ne
 s

hi
ft

C

0 12 24 36 48
Day

1

2

3

S
ta

nd
ar

d 
de

vi
at

io
n 

(s
em

ito
ne

)
fo

r s
ta

irc
as

e 
sh

ift

E

-4 -2 0 2 4 
Pitch sung by birds (semitone)

0

0.01

P
ro

ba
bi

lit
y 

de
ns

ity

F

0 7 14
Day

0.5

1  

S
ta

nd
ar

d 
de

vi
at

io
n 

(s
em

ito
ne

)
fo

r 0
.5

 s
em

ito
ne

 s
hi

ft

A

0 7 14
Day

0.5

1  

S
ta

nd
ar

d 
de

vi
at

io
n 

(s
em

ito
ne

)
fo

r 1
 s

em
ito

ne
 s

hi
ft

B

0 7 14
Day

0.5

1  

S
ta

nd
ar

d 
de

vi
at

io
n 

(s
em

ito
ne

)
fo

r 3
 s

em
ito

ne
 s

hi
ft

D

Fig. 3. Predictions of our model using the parameter values obtained from fitting the data shown in Fig. 2. The dots with error bars (A–E) and the histogram
(F) represent experimental data with colors, symbols, error bars (from bootstrapping), and other plotting conventions as in Fig. 2. The dotted lines with
1-SD bands represent model predictions. Our model correctly predicts the behaviors of the SDs of the pitch distributions. Specifically, the best-fit model lines
predict increases in the SD in B, C, and E, which correspond to 1 semitone, 1.5 semitones, and the staircase shift, respectively. At the same time, the data show
that the SD increases for B, C, and E (P value for a positive dependence of the SD when regressed on time is 4× 10−4, 5× 10−5, and < 10−6 for B, C, and E,
respectively). (F) Our model predicts that, at the end of the staircase experiment (mean and SD shown in Figs. 2B and 3E, respectively), the pitch distribution
should be bimodal, while it is unimodal initially (compare Fig. 2C). This is also supported by the data. Specifically, a fit with a mixture of two Gaussian peaks
has an Akaike’s information criterion score higher than a fit to a single Gaussian by 50 (in decimal log units), which is highly statistically significant (the
data here are from day 47 from the single bird who was exposed to the staircase shift for the longest time, and the amount of data is insufficient to fit
more complex distributions). Further, the two peaks are centered far from each other (0.59± 0.04 of a semitone and 2.17± 0.62 semitones, with error bars
obtained by bootstrapping), illustrating the true bimodality. Neither the data nor the models show unambiguous bimodality in other learning cases.
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learning-dependent changes in the width and shape of the dis-
tribution of the produced behaviors.

To further increase the confidence in our model, we show ana-
lytically (Materials and Methods) that traditional linear models
with Gaussian statistics (13) cannot explain the different levels of
compensation for different perturbation sizes. While we cannot
exclude that birds would continue adapting if exposed to pertur-
bations for longer time periods and would ultimately saturate at
the same level of adaptation magnitude, the Gaussian models are
also argued against by the shape of the pitch distribution, which
shows heavy tails (Figs. 2C and 3F), and by our ability to predict
not just the mean pitch, but the whole pitch distribution dynamics
during learning.

An important aspect of our dynamical model is its ability to
reproduce multiple different timescales of adaptation (Fig. 2 A
and B) using a nonlinear dynamical equation with just a sin-
gle timescale of the update (1 d). As with other key aspects of
the model, this phenomenon results from the non-Gaussianity
of the distributions used and specifically the many timescales
built into a single long-tailed kernel of uncertainty increase over
time. This is in contrast to other multiscale models that require
explicit incorporation of many timescales (7, 13). While multiple
timescales could be needed to account for other features of the
adaptation, our model clearly avoids this for the present data. We
expect that an extension of our model to include multiple explicit
timescales will account for individual differences across animals,
for the dynamics of acquisition of the song during development,
and for the slight shift of the peak of the empirical distribution
in Fig. 3F from φ= 0.

Previous analyses of the speed and magnitude of learning in
the Bengalese finch have noted that both depend on the over-
lap of the distribution of the natural variability at the baseline
and at the shifted means (25, 39): Small overlaps result in slower
and smaller learning, so that different overlaps lead to differ-
ent timescales. However, these prior studies have not provided
a computational mechanism or a learning–theoretic explana-
tion of why or how such overlap might determine the dynamics
of learning. Our dynamical inference model provides such a
computational mechanism.

We have chosen the family of so-called Lévy alpha-stable dis-
tributions to provide the central ingredient of our model: the
heavy tails of the involved probability distributions. In general, a
symmetric alpha-stable distribution has a relatively narrow peak
in the center and two long fat tails, and this might provide some
valuable qualitative insights into how the nervous system pro-
cesses sensory inputs. For example, a narrow peak in the middle
of the likelihood function suggests that the brain puts a high
belief in the sensory feedback. However, the heavy tails say that
it also puts certain weight (nearly constant) on the probability of
very large errors outside of the narrow central region. We have
verified that the actual choice of the stable distributions is not
crucial for our modeling. For example, one could instead take
each likelihood as a power-law distribution or as a sum of two
Gaussians with equal means, but different variances. The latter
might correspond to a mixture of high (narrow Gaussian) and
low (wide Gaussian) levels of certainty about sensory feedback,
potentially arising from variations in environmental or sensory
noise or from variations in attention. As shown in Materials and
Methods, different choices of the underlying distributions result
in essentially the same fits and predictions. This suggests that
the heavy tails themselves, rather than their detailed shape, are
crucial for the model.

Another extension of this work would be to use this frame-
work to account for interindividual differences in behavior and
neural activity (48, 49), which are not easily addressable given
current experimental limitations. Like in many other behavioral
modeling studies (13, 34), the present version of our model can fit
only an average animal (because of our need to aggregate large

datasets to accurately estimate behavioral distributions), making
our results semiquantitative with respect to the statistics of any
particular individual. Nevertheless, our framework represents a
class of model that can explain a broader range of qualitative
results than previous efforts, including, in particular, the shape
of the distribution of exploratory behaviors.

Finally, while we used Bengalese finches as the subject of this
study, nothing in the model relies on the specifics of the songbird
system. Our approach might, therefore, also be applied to studies
of sensorimotor learning in other model systems, and we predict
that any animal with a heavy-tailed distribution of motor outputs
should exhibit similar phenomenology in its sensorimotor learn-
ing. Exploring whether the model allows for such cross-species
generalizations is an important topic for future research, as are
questions of how networks of neurons might implement such
computations (50–53).

Materials and Methods
Experiments. The data used are taken from the experiments in ref. 33 and
are described in detail there. Briefly, subjects were nine male adult Ben-
galese finches (females do not produce song) aged over 190 d. Lightweight
headphones and microphones were used to shift the perceived pitches of
birds’ own songs by different amounts, and the pitch of the produced song
was recorded. For each day, only data from 10 AM to 12 PM are used. The
same birds were used in multiple (but not all) pitch-shift experiments sepa-
rated by at least 32 d. Changes in vocal pitch were measured in semitones,
which are a relative unit of the fundamental frequency (pitch) of each song
syllable:

pitch in semitone≈ 1.2 log2
syllable frequency

mean of baseline syllable frequency
.

The error bars reported for the group means in Fig. 2 indicate the error
of the mean that accounts for variances both across individual birds and
within one bird. Specifically, if yµi represents the pitch of the ith vocaliza-
tion from the µth bird on a specific day (i = 1, . . . n, µ= 1, . . . , m), then the
mean pitch for the day for each bird is yµ = 1

n

∑
i yµi , and the global mean

pitch is y = 1
m

∑
µ yµ. With these, we define the error of the mean used

in Fig. 2 as

δy =

√√√√∑µ (yµ− y)2

(m− 1)2
+

1

m

∑
µ

[∑
i

(
yµi − yµ

)
2

(n− 1)2

]
, [3]

where the first term in the square root represents the variance across birds,
and the second term is the variance within one bird, averaged over the birds.

Stable Distributions. A probability distribution is said to be stable if a lin-
ear combination of two variables distributed according to the distribution
has the same distribution up to location and scale (47). By the general-
ized central limit theorem, the probability distributions of sums of a large
number of i.i.d. random variables with infinite variances tend to be stable
distributions (47). A general stable distribution does not have a closed-form
expression, except for three special cases: Lévy, Cauchy, and Gaussian. A sym-
metric stable variable x can be written in the form x = γy +µ, where y is
called the standardized symmetric stable variable and follows the following
distribution (47):

f(y;α) =
1

2π

∫ ∞
−∞

du e−|u|
α

cos (yu). [4]

Thus, any symmetric stable distribution is characterized by three parame-
ters: the type, or the tail weight, parameter α; the scale parameter γ; and
the center µ. α takes the range (0, 2] (47). If α= 2, the corresponding distri-
bution is the Gaussian, and if α= 1, it is the Cauchy distribution. γ can be
any positive real number, and µ can be any real number. The above integral
is difficult to compute numerically. However, due to the common occurrence
of stable distributions in various fields, such as finance (54), communication
systems (55), and brain imaging (56), there are many algorithms to compute
it approximately. We used the method of ref. 57. In this method, the central
and tail parts of the distribution are calculated using different algorithms:
the central part is approximated by 96-points Laguerre quadrature and the
tail part is approximated by Bergstrom expansion (58).
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Note that even though we take the propagator and the likelihood dis-
tributions as stable distributions in our model, their iterative application
(effectively, a product of many likelihood distributions iterated with a con-
volution with the kernel), as well as truncation, results in finite variance
predictions, allowing us to compare predicted variances of the behavior
with experimentally measured ones.

Fitting. Our model consists of three truncated stable distributions, one for
each of the two likelihood functions resembling the feedback modalities
and a third for the propagation kernel. We use truncation to ensure bio-
logical plausibility: Neither extremely large errors nor extremely large pitch
changes are physiologically possible. We truncate the distributions to the
range [−8, 8] semitones—much larger than imposed pitch shifts and slightly
larger than the largest observed pitch fluctuations in our data, 7 semitones.
This leaves us with nine parameters of which we need to fit six from data,
namely the type parameters α and the scale parameters γ, while the cen-
ter parameters µ are predetermined: The two likelihoods are at 0 and ∆,
respectively, while the propagation kernel is centered around the previous
time-step value (Eq. 1). The prior (and accordingly the posterior) is a discrete
distribution with a resolution of 1,600 bins covering equidistantly the entire
support of the distribution ([−8, 8] semitones). The value within each bin
is computed by the Bayes formalism given in Eq. 2. As described earlier in
Mathematical Model, the initial prior is given as the steady-state distribution
after repeatedly applying Eq. 2 to a uniform distribution. In other words,
the prior is not an independent variable in the model, but it is determined
self-consistently by the likelihoods and the kernel. The resulting prior distri-
bution is compared with the empirical distribution to compute the quality
of fit according to the objective functions described below. Furthermore we
point out that it is essential to have a non-Gaussian kernel: With a Gaus-
sian kernel the baseline (t = 0 prior distribution) is, essentially, Gaussian and
would thus not match the data in Fig. 2D. Similarly, the likelihood func-
tions must be long tailed; otherwise the combined likelihood would not be
bimodal as found empirically in Fig. 3F, and large perturbations would not
be rejected—even if the prior was long tailed (e.g., due to a long-tailed
kernel).

We construct an objective function that is a sum of terms represent-
ing the quality of fit for each of the three datasets to our disposition:
the χ2 for four adaptations of the means to the respective constant shifts
(Fig. 2A), the χ2 for the adaptation of the mean to the staircase shifts
(Fig. 2B), and the log-likelihood of the observed baseline pitch probabil-
ity distribution (Fig. 2C). Using Eq. 3 to define the error of the mean, we
calculate χ2 as

χ
2

=
1

T

T∑
t=1

(
φt − yt

)
2

δy(t)2
, [5]

where t∈ [1, T] represents the days for a specific experiment with total dura-
tion of T days, while φt , yt , and δy(t) represent the theoretical result, the
mean, and SE of the experimental data on day t, respectively. To make sure
that all three terms contribute on about the same scale to the objective func-
tion, we multiply the baseline fit term by 10. We use this objective function
because the data we fit are heterogeneous: For learning with a sensory per-
turbation, we use only the means and the error bars of the produced pitch
curves, while for the baseline distribution, we use the whole distribution.
We choose to do it this way because it is computationally intensive to cal-
culate likelihoods for distributions of vocalizations for every day and to do

it repeatedly for parameter sweeps. Given that we are fitting only a hand-
ful of parameters, while the datasets are very constraining, we do not think
that we lose accuracy by fitting the summary statistics instead of performing
a full maximum-likelihood estimation.

The objective function landscape is not trivial in this case, and there is not
a single best set of parameters. Fig. 4 illustrates this by showing the qual-
ity of fit as a function of each pair of (α, γ), while keeping the other four
parameters fixed. There is a large subspace (a plateau or a long nonlinear
valley, depending on the projection used) that provides similar fit values. In
other words, the effective number of important parameters is less than six.
Thus, choosing the maximum of the objective function and characterizing
the error ellipsoid, or linear sensitivity to the parameters, to get the best-fit
parameter values and their uncertainties is not appropriate. As suggested
in the literature on sloppy models (59, 60), where such nontrivial likelihood
landscapes are discussed, instead we focus on values and uncertainties of
the fits and predictions themselves. For this, we sweep through the entire
parameter space and, for each set of parameters ~θ= {α1, γ1,α2, γ2,αk, γk},
we calculate the value of the objective function L(~θ) and the correspond-
ing fitted or predicted curve f(~θ). Then for the mean fits/predictions (lines
in Figs. 2, 3, and 5), we have

〈
f(~θ)
〉

=

∑
~θ

e−L(~θ)f(~θ)∑
~θ

e−L(~θ)
. [6]

For the SDs, denoted by shaded regions in Figs. 2, 3, and 5, we have

σ
2
f =
〈

f(~θ)2
〉
−
〈

f(~θ)
〉2
. [7]

There are many ways of doing the sweep over the parameters. Here we
choose first to find a local minimum (however shallow it is). Then for each
parameter, we choose six data points on each side of the minimum, dis-
tributed uniformly in the log space between the local minimum and the
extremal parameter values ((0.2, 1.9] for each α and [0.01, 8] for each γ).
The extremal values avoid α= 0, 2 and γ= 0, which are singular and dra-
matically slow down computations. Thus, there are a total of 13 grid points
for each parameter and a total of 136≈ 4.8 · 106 total parameter samples.
Choice of the Shape of Distributions. For Figs. 2 and 3 in the main text,
we have chosen stable distributions for L1, L2, and pprop. To investigate
effects of this choice, we repeated the fitting and the predictions for dif-
ferent distribution choices. We consider a family of power-law distributions

∝ 1/
(

1 + (φ/γ)2α
)

and a family of mixtures of Gaussians of different width

ρN(0, γ2) + (1− ρ)N(0, δ2). Distributions in either family produce very similar
fits to the stable distribution model. For example, Fig. 5 shows the fits and
predictions for the power-law distribution model, and the power-law family
fits the means of the pitch compensation data slightly worse, but the base-
line pitch distribution slightly better, than the truncated stable distribution
model (Fig. 2). The detailed shape of the distributions seems less important
than the existence of the heavy tails.
Linear Dependence on Pitch Shift in a Kalman Filter with Multiple
Timescales. We emphasized that traditional learning models cannot
account for the nonlinear dependence of the speed and the magnitude
of learning on the error signal. Here we show this for one such common
model, originally proposed by Körding et al. (13). This Kalman filter model
belongs to the family of Bayes filters, which are dynamical models describing
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Fig. 4. (A–C) Objective function as a function of the two parameters (stability and scale) for (A) the first (shifted) likelihood, (B) the second (unshifted)
likelihood, and (C) the propagation kernel, while the respective other four parameters are held fixed. The gray shades represent the decimal logarithm
of the objective function (effectively, logarithms of the negative log-likelihood), and lighter shades mean a better fit. Because of the logarithmic scaling,
small changes in the shading represent large changes in the quality of the fit. The black crosses show the parameter values for the deepest local minimum
in this range of parameters. Note that, even though the minimum in C is close to the Gaussian kernel (αk = 2), a Gaussian kernel cannot fit the data well.
Specifically, it cannot reproduce a non-Gaussian distribution of the baseline pitch, instead essentially matching the parabola in Fig. 2C.
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Fig. 5. Fits and predictions with the power-law family of heavy-tailed distributions instead of the stable distribution family. (A–C) Equivalent to the panels
in Fig. 2 A–C. (D–F) Equivalent to the panels in Fig. 3 C, E, and F. The shaded areas around the theoretical curves represent confidence intervals for 1 SD. The
quality of all of the five fitted mean compensation curves combined is χ2/df ≈ 1.56, so that the truncated stable distributions used in the main text provide
for (slightly) better fits. At the same time, the deviance of the fitted baseline distribution in C relative to the perfect fit, estimated as the NSB entropy of
the data (37, 38), is 0.022 per sample point, slightly better than for the truncated stable distribution model (Fig. 2).

the temporal evolution of the probability distribution of a hidden state vari-
able (can be a vector or a scalar) and its update using the Bayes formula
for integrating information provided by observations, which are condition-
ally dependent on the current state of the hidden variable. The specific
attributes of a Kalman filter within the general class of Bayes filters (35) are
the linearity of the temporal evolution of the hidden state (the pitch φ for
the birds, but referred to as disturbances d in ref. 13 and hereon), the linear
relation between the measurements (observations) and the hidden variable,
and the Gaussian form of the measurement noise and the distribution of
disturbances.

One can argue that Kalman filter models with multiple timescales may
be able to account for the diversity of learning speeds in our pitch-shift
experiments. We explore this in the context of an experimentally induced
constant shift ∆ to one disturbance d in the Kalman filter model with mul-
tiple timescales from ref. 13. If there is a constant shift ∆, equation 3 in ref.
13 takes the form

Ot = ∆ + H · dt + Wt. [8]

The first step in the Kalman filter dynamics is the prediction

〈d〉t+1|t = A〈d〉t|t , [9]

where 〈d〉s|t is the mean disturbance vector at time s given measurements
up to time t and A = diag(1− τ−1

i ) with τi being the relaxation timescale of
di. We assume that the shift occurs when the disturbances have relaxed to
the steady state: 〈d〉= 0. Therefore, we approximate the standard Kalman
filter equation describing the observation update of the expectation value
of the disturbance after a measurement at time t + 1 as (see ref. 35 for a
detailed formal description)

〈d〉t+1|t+1 = 〈d〉t+1|t +
Σt+1|tH

T

HΣt+1|tHT + R
(∆−H · 〈d〉t+1|t), [10]

where R is the covariance matrix of the measurement noise, and Σ is the
covariance matrix of the hidden variables. Σ does not depend on the mea-
surement and is thus not affected by the shift ∆. Thus, the steady-state
prediction variance Σs is given by a solution to the equation

Σs = A

(
Σs−

ΣsHT HΣs

HΣsHT + R

)
AT

+ Q, [11]

where A is the matrix determining the temporal evolution of the mean dis-
turbances, Eq. 9, and Q is the covariance matrix of the intrinsic (temporal
evolution) noise.

From Eq. 11 we see that Σs is constant if the perturbation occurs when
the system was at the steady state. We now wish to find the new steady
state given the constant perturbation ∆. Consider, for simplicity, two distur-
bances, each one with its own temporal scale n = 2. The components of the
steady-state covariance are

Σs =

[
Σ11 Σ12

Σ12 Σ22

]
, [12]

and we define

f1 =
Σ11 + Σ12

Σ11 + 2Σ12 + Σ22
,

f2 =
Σ12 + Σ22

Σ11 + 2Σ12 + Σ22
. [13]

Substituting Eq. 9 in Eq. 10 we get

[
〈d1〉t+1|t+1

〈d2〉t+1|t+1

]
=

[
1− τ−1

1 0
0 1− τ−1

2

][
〈d1〉t|t
〈d2〉t|t

]

+

[
f1

f2

]
(∆− (1− τ−1

1 )〈d1〉t|t − (1− τ−1
2 )〈d2〉t|t). [14]

In the steady state, 〈d〉t+1|t+1 = 〈d〉t|t = ds, we get

d(1)
s = ∆

f1τ1

1 + f1(τ1− 1) + f2(τ2− 1)
[15]

d(2)
s = ∆

f2τ2

1 + f1(τ1− 1) + f2(τ2− 1)
. [16]

Thus, we find that the sum of the disturbances is proportional to
∆ independent of the size of ∆ even for systems with multiple
timescales.

Generalizing the result to n disturbances with different timescales, we
get the following equations at steady state:
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τ
−1
i di

s = fi∆− fi

n∑
j=1

(1− τ−1
j )dj

s. [17]

These equations are solved by

di
s = ∆

fiτi

1 +
∑n

j=1 fj(τj − 1)
, [18]

which generalizes the linear dependence of learning on ∆ for arbitrary
n. Thus, this (and similar) Kalman filter-based model cannot explain the
experimental results studied here.
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